SHORT PAPER

Synthesis of 2,5- and 2,6-di-*t*-butyl-4-halo- or -4-methoxy-phenols using silica, lithium perchlorate and lithium bromide as neutral catalysts[†] B. P. Bandgar*, L. S. Uppalla and V. S. Sadavarte

Organic Chemistry Research Laboratory, School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Vishnupuri, Nanded-431 606, India

When a mixture of 4-halo- or 4-methoxy-phenol and excess of *t*-butyl chloride in the presence of neutral catalyst such as silica or lithium perchlorate or lithium bromide was refluxed, 2,5-and 2,6-di-*t*-butyl-4-halo or 4-methoxy phenols were obtained in good yields.

Synthesis of 2,5-and 2,6-di-t-butylated phenols is of great importance because of their usefulness as antioxidants.¹ Generally t-butylation of phenols has been carried out using either Lewis acid¹ or Bronsted acid catalysts.² Recently, the synthesis of 2,5-di-t-butyl-4-fluorophenol has been reported in very poor yield using 4-fluorophenol and t-butyl chloride in the presence of AlCl₃ as a catalyst.¹ The synthesis of 2,6-di-tbutyl-4-fluorophenol using 2,6-di-t-butylphenol and expensive xenon difluoride is also described in the literature.³ More recently an efficient and high yielding synthesis of 2,5-di-tbutyl-4-fluorophenol using environmentally friendly catalysts having Lewis acid or Bronsted acid or both characters has been reported.⁴ Now we report for the first time the synthesis of 2,5- and 2,6-di-t-butyl-4-halo- or -4-methoxy- phenols using neutral catalysts such as silica, lithium perchlorate and lithium bromide.

When a mixture of 4-fluorophenol, excess of *t*-butyl chloride and a catalytic amount of silica or lithium perchlorate or lithium bromide was refluxed, the product formed was only 2,5-di-*t*butyl-4-fluorophenol in good yield (75–91%, entries 1–3) compared with reported results using AlCl₃ as a catalyst¹ which gave only 10.2% yield of the product. The catalysts are removed by simple filtration. Therefore, the present methodology is superior in terms of yields, simplicity of work-up and it is truly catalytic. As the catalysts are neutral and inexpensive, the present method of *t*-butylation is economical as well as ecofriendly as compared with the reported methods using Lewis acid catalyst,¹ Bronsted acid catalyst² and xenon difluoride.³

It is important to note that mono-*t*-butylated 4-fluorophenol was not formed even in trace amounts. In addition, it is worth commenting that 4-chlorophenol (entries 5–7), 4-bromophenol (entries 8–10) and 4-iodophenol (entries 11–13) on *t*-butylation in the presence of silica, LiClO₄ and LiBr gave the corresponding 2,6-di-*t*-butylated phenols and not 2,5-di-*t*-butylated phenols. This is because the steric effect of bulky chloro, bromo and iodo groups at the 4- position did not allow substitution in the 5-position of phenol.

The fluorine 2p orbital of 4-fluorophenol can overlap with the aromatic carbon more effectively than the 3p orbital of chlorine, 4p orbital of bromine, 5p orbital of iodine in 4chlorophenol, 4-bromophenol and 4-iodophenol respectively.^{5,6} Therefore, F is a less deactivating group than Cl, Br or I. However, the electron-withdrawing inductive effect of fluorine makes it deactivating relative to hydrogen.^{5,6} The orientation of the *t*-butyl group in 4-fluorophenol is due to the F group whereas the orientation of the *t*-butyl group in 4-chlorophenol, 4-bromophenol and 4-iodophenol is due to the phenolic OH group. The *t*-butylation of 4-fluorophenol gives exclusively 2,5-di-*t*-butyl-4-fluorophenol because of the small size of F, the π -donor effect of F and the 2-*t*-butyl directing effect of an intermediate.

Furthermore, *t*-butylation of 4-methoxyphenol gave a mixture of 2,5-di-*t*-butyl-4-methoxyphenol (**V**) and 2,6-di-*t*-butyl-4-methoxyphenol (**VI**) in a 3:2 ratio. This is because both OH and OMe groups are o / p orienting and OH is more strongly electron donating than OMe. The 2-*t*-butyl group of the intermediate, 2-*t*-butyl-4-methoxyphenol, is sufficient to direct the second *t*-butyl group to the 5-position. As the catalysts used here are neutral, the most important advantage of this methodology is to carry out *t*-butylation of complex phenol molecules having acid sensitive functional groups. An attempt to carry out *t*-butylation of 4-fluorophenol in the absence of these catalysts failed (entry 4).

Experimental

¹H NMR and ¹³C NMR spectra were obtained from a 200 MHz instrument whereas IR spectra were recorded on a Bomem MB104 FT-IR spectrometer. Neutral silica gel G, LiClO_4 and LiBr were obtained from Lancaster, UK.

Preparation of 2,5-di-t-butyl-4-fluoropheno: A mixture of 4-fluorophenol (5 mmol), t-butyl chloride (10 ml) and catalyst, silica or LiClO₄ or LiBr (100 mg) was refluxed for specified time (Table). After completion of the reaction (TLC), the catalyst was filtered off and washed with dichloromethane (4 \times 10 ml). The solvent was removed under vacuum and the crude product was purified by column chromatography (pet. ether : ethylacetate = 9:1 as an eluent).

2,5-*D*i-t-*buty*l-4-*fluorophenol* (**I**): m.p. = 92–93°C (lit.¹ = 92–93°C); IR : 1210, 1500, 1610, 3550cm⁻¹; ¹H NMR (200 MHz, CDCl₃): $\delta = 1.32$ (s, 9H, 3 × CH₃), 1.39 (s, 9H, 3 × CH₃), 4.91 (s, 1 H, OH), 6.65 (d, *J* = 8.5 Hz, 1H, Ar-H), 6.92 (d, *J* = 15.8 Hz, 1 H, Ar-H); ¹³C NMR (50 MHz) : $\delta = 28.7$, 29.5, 33.1, 34.3, 114.6, 115.6, 134.3, 135.1 149.6, 156 ppm. MS (70 eV) = *m*/*z* (%) = 224.3 (57); 57.04 (100). Anal. calc. for C₁₄H₂₁FO (224.3) : C, 74.96; H,9.37; F, 8.48; Found: C, 75.06; H, 9.29; F, 8.39. 2,6-*D*i-t-*buty*l-4-*chlorophenol* (**II**): b.p. = 247–248 0C/760 mm of Hg; IR : 1210, 1500, 1600, 3570 cm⁻¹; ¹H NMR (200 MHz, CDCl₂):

2,6-Di-t-butyl-4-chlorophenol (II): b.p. = 247–248 0C/760 mm of Hg; IR : 1210, 1500, 1600, 3570 cm⁻¹; ¹H NMR (200 MHz, CDCl₂): $\delta = 1.33$ (s, 18 H, 6 x CH₂), 5.19 (s, 1 H, OH), 7.2 (s, 2 H, Ar–H); ¹³C NMR (50 MHz): $\delta = 25.2$, 35.4, 112.4, 116.3, 130.7, 141.2. MS (70 eV) = m/z (%) = 240.5 (71.2), 57.04 (100). Anal. calc. for C₁₄H₂₁ClO (240.5) : C, 69.85; H, 8.73; Cl, 14.76; Found C, 69.79; H, 8.81; Cl, 14.69.

^{*} To receive any correspondence. E-mail: upekam@hotmail.com

[†] This is a Short Paper, there is therefore no corresponding material in *J Chem. Research* (M).

^{2,6-}Di-t-butyl-4-bromophenol (III): m.p. = 80–81 °C (Lit⁷ m.p. = 78–83 °C); IR = 1190, 1490, 1600, 3580 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ = 1.31 (s, 18H, 6 × CH₃), 4.8 (s, 1 H, OH), 6.9 (s, 2 H,

Table 1 *t*-Butylation of phenols using silica, lithium perchlorate and lithium bromide

Entry	Phenol	Catalyst	Product	Reaction time/h	Yield/%
1 2 3 4	OH F	Silica LiClO₄ LiBr None	H H F (I)	2.5 0.75 1.00 6.00	75 89 91 0.0
5 6 7	OH CI	Silica LiClO₄ LiBr	CI OH (II)	2.5 0.75 0.80	79 89 88
8 9 10	OH Br	Silica LiClO₄ LiBr	H H Br (III)	2.55 0.80 0.80	78 82 87
11 12 13	OH I I	Silica LiClO₄ LiBr	I (IV)	3.00 0.80 0.80	69 66 61
14 15 16	OH OMe	Silica LiClO₄ LiBr	OH OMe (V) + (VI)	2.5 0.90 1.00	68 79 86
			3:2		

Ar–H); 13 C 13 C NMR (50 MHz): $\delta = 20.7, 32.1, 114.6, 115.2, 128.3, 137.2. MS (70 eV) = <math>m/z$ (%) = 285.14 (45), 57.04 (100). Anal. calc. for C₁₄H₂₁BrO (285.14): C, 58.94; H, 7.3; Br, 28.07; Found: C, 58.91 H, 7.38; Br, 28.16

2,6-Di-t-butyl-4-iodophenol (**IV**): m.p. = 109–110 °C; IR: 1200, 1500, 1600, 3560 cm⁻¹; ¹H-NMR (200MHz, CDCl₃): δ = 1.30 (s, 18 H, 6 × CH3), 4.8 (s, 1 H, OH), 6.9 (s, 2H, Ar–H); ¹³C NMR (50 MHz): δ = 21.4, 30.9, 111.4, 113.3, 125.4, 132.1. MS (70 EV) = *m*/z (%) =332.14 (43.2), 57.04 (100). Anal. calc. for C₁₄H₂₁IO (332): C, 50.60; H, 6.32; I, 38.2; Found: C, 50.71; H, 6.40; I, 38.18.

2,5-Di-t-butyl-4-methoxyphenol (V): m.p. = $102-103 \,^{\circ}$ C (Lit⁷m.p. = $99-102 \,^{\circ}$ C); IR : 1205, 1480, 1590, 3540 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): $\delta = 1.33 \,(s, 9H, 3 \times CH_3), 1.39 \,(s, 9H, 3 \times CH_3), 4.15 \,(s, 3H, OMe) 4.52 \,(s, 1 H, OH), 6.85(m, 2 H, Ar-H); ^{13}C NMR (50 MHz): <math>\delta = 24.7, 25.2, 35.1, 36.2, 60.3, 114.2, 115.6, 134.7, 135.2, 141.9, 144.4$ MS (70 EV) = $m/z \,(\%) = 236.15 \,(100)$. Anal. calc. for $C_{15}H_{24}O_2 \,(236.15) : C, 76.27; H, 10.16;$ Found : C, 76.21; H, 10.11

2,6-Di-t-butyl-4-methoxyphenol (**VI**): m.p. = 104–105 °C (Lit⁷m.p. = 105–106 °C); IR : 1200, 1490, 1600, 3550 cm⁻¹; ¹H-NMR (200 MHz, CDCl₃) : δ = 1.31 (s, 18H, 6 × CH₃), 4.2 (s, 3H, OMe), 4.6 (s, 1 H, OH), 7.1(s, 2H, Ar–H); ¹³C NMR (50 MHz): δ = 24.9, 33.7, 58.4, 110.7, 114.1, 127.3, 136.4. MS (70 eV) = m/z (%) = 236.15

(56), 57.04 (100). Anal. calc. for $\rm C_{15}H_{24}O_2$ (236.15): C, 76.27; H, 10.16; Found : C, 76.18; H, 10.21

VSS thanks CSIR, New Dehli for Jr. Research Fellowship.

Received 23 April 2000; accepted 15 November 2000 Paper 00/293

References

- 1 S.T. Purrington and G. M. Green, J. Fluorine Chem., 1996, 76, 201.
- 2 C.D. Cook, R.G. Inskeep, A.S. Rosenberg, and E.C. Curtis Jr, J. Am. Chem. Soc., 1955, 77, 1672.
- 3 I. Takemoto and K. Yamasaki, Biosci. Biotech, Biochem., 1994, 58, 594.
- 4 B. P. Bandgar, S. P. Kasture and C. Dudhmal, *J. Fluorine Chem.*, 2000, **81**, 101.
- 5 R.G. Coombes, D.H.G. Crout, J.G. Hoggett, R.B. Moodie and K. Schofield, J. Chem. Soc. B., 1970, 347.
- 6 N.C. Deno and R. Stein, J. Am. Chem. Soc., 1956, 78, 578.
- 7 Dictionary of Organic Compounds, 6th edn., Chapmann and Hall, London, 1995.